

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2023

GE2-P2-Statistics

Fundamental of Probability Theory

Time Allotted: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks.

GROUP-A

1. Answer any five questions:
(a) If $P(A \cup B)=\frac{5}{6}, P(A \cap B)=\frac{1}{3}$ and $P\left(A^{c}\right)=\frac{1}{2}$, then show that A and B are independent.
(b) What is the chance that a non-leap year selected at random will contain 53 Sundays?
(c) The mean and variance of a binomial variate X are 4 and $\frac{4}{3}$. Find $P(X=1)$.
(d) Show that the chance of throwing an odd number with a die is $\frac{1}{2}$.
(e) For any random variable X, show that $\operatorname{var}(a-b X)=b^{2} \operatorname{var}(X)$.
(f) For any two events A and B, show that $P(A+B) \leq P(A)+P(B)$.
(g) Explain discrete probability distribution.
(h) Distinguish between p.m.f and p.d.f.

GROUP-B

2. Answer any three questions:
(a) State and prove Bayes' Theorem.
(b) Derive Poisson distribution as the limit of binomial distribution.
(c) Find the variance of binomial distribution.
(d) If X has Poisson distribution with parameter λ, then show that

$$
P[X \text { is even }]=\frac{1}{2}\left[1+e^{-2 \lambda}\right]
$$

(e) The mean of a normal distribution is 50 and 5% of the values are greater than 60 . Find the s.d. of the distribution. (Given that the area under standard normal curve between $Z=0$ and $Z=1.64$ is 0.45).

GROUP-C

3. Answer any two questions:
(a) Find the mean and variance of normal distribution.
(b) (i) Show that the expectation of the sum of two jointly distributed random variable X and Y is the sum of their expectations.
(ii) For what value of $k, f(x, y)$ represents the probability density function of two continuous random variable X and Y ?

$$
\begin{aligned}
f(x, y) & =k(4-2 x+y), \quad 0<x<3, \quad 2<y<4 \\
& =0, \text { elsewhere }
\end{aligned}
$$

(c) (i) Let the variable X have the distribution $P(X=0)=P(X=2)=p$, $P(X=1)=1-2 p$ for $0 \leq p \leq \frac{1}{2}$. For what value of p is the $\operatorname{var}(X)$ maximum?
(ii) Find the mode of the binomial distribution.
(d) (i) Find the probability that at most 5 defective fuses will be found in a box of 200 fuses, if experience show that 2% of such fuses are defective.
(ii) A coin is tossed until a head appears. What is the expectation of the number of tosses?

